

Reg.	No.		m 1	1 6	=		B 1					-	'n		*		н	30					
Name	٠.																						

Seventh Semester B.Tech. Degree Examination, October 2014 (2008 Scheme) 08.701 : COMPUTER GRAPHICS (R)

Time: 3 Hours of a municipality part of a transport of the state of th

PART - A (- We will) and a letter the l

Answer all questions, each question carries 4 marks.

- 1. Briefly explain four applications of computer graphics.
- 2. Discuss shadow-mask method for colour graphics. For which type of display system it is commonly used?
- 3. Consider a display system using 1-bit per pixel and a resolution of 1024×1024 pixels. What is the size of frame buffer (in bytes) required for the display?
- 4. What is homogeneous coordinate system? What are its advantages?
- 5. The end points of a line segment are (10, 10) and (30, 30). Obtain its new end points after 30 degree rotation in counter clockwise direction.
- 6. Show that the composition of two rotations is additive by concatinating the matrix representations for $R(\theta_1)$ and $R(\theta_2)$ to obtain $R(\theta_1) \cdot R(\theta_2) = R(\theta_1 + \theta_2)$.
- 7. What are the data structures used to represent a polyhedron in a computer?
- 8. Explain different types of parallel projections.
- Distinguish between one-point perspective projection and two point perspective projection.
- 10. What do you understand by equilization of gray level? Give an example having four gray levels for an image represented by 4 × 4 gray level values.

PART-B

Answer one full question from each module. Each full question carries 20 marks.

Module - 1

- 11. a) Explain the components of a raster scan display system.
 - b) Given a circle of radius = 10 using Mid-point circle algorithm, determine positions along the circle octant in the first quadrant from x = 0 to x = y. The initial value of decision parameter $p_0 = 1 r = -9$. The initial point is (0, 10). Tabulate k, p_k , (x_{k+1}, y_{k+1}) .

OR

- 12. a) What is meant by scan conversion?
 - b) Explain (with figures) Scan line polygon filling algorithm. Discuss the data structures used to make the algorithm more efficient.

Module - 2

- 13. a) Derive the transformation for reflecting a triangle with respect to a line with given slope and y-intercept.
 - b) Explain a polygon clipping algorithm. Lava elanibroco autoenego

OR

- a) Illustrate how shearing transformation can be used to convert a unit square into a parallelogram.
 - b) Explain Cohen-Sutherland line clipping algorithm.

Module - 3

- 15. a) Derive transformation for perspective projection.
 - b) Consider a unit cube whose one vertex situated at origin. Apply the one point perspective projection on the z=0 plane assuming the centre of projection at $z_c=2$ on the z-axis.

OR

- 16. a) Write and explain Z-buffer algorithm for hidden surface elimination.
 - b) Compare Robert's edge detector with Sobel's edge detector.